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Generalized crossover in multiparameter Hamiltonians
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Many systems near criticality can be described by Hamiltonians involving several relevant couplings and
possessing many nontrivial fixed points. A simple and physically appealing characterization of the crossover
lines and surfaces connecting different nontrivial fixed points is presented. Generalized crossover is related to
the vanishing of the renormalization group functml. An explicit example is discussed in detail based on
the tetragonal Landau-Ginzburg-Wilson Hamiltonian.
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According to Wilson renormalization grougWRG) specific example can be easily extended to many other sys-
theory, the critical properties of physical systems undergoingems where a similar multiplicity of nontrivial fixed points is
second-order phase transitions are well described by the ipresent.
frared behavior ofquantun field theories belonging to the ~ Our starting point is the following Hamiltonian:
appropriate universality class. In practice, however, it is usu-
ally quite hard to reproduce the experimental conditions cor-Hw)]:J d% E 2 [0, 6% (X)+Td2(X)]
responding to strict criticality and to verify the scaling pre- 293 T al
dicted by (massless field theory. Nevertheless, in many

;ituations, one may still describe the pehavior of the system + % _ 2 (Up+vo8ij + Wi Sap) ¢§'i(x)¢§'j(x)

in terms of “effective” exponents. This dependence of the ijab

effective exponents on some nonuniversal parameter is usu- (1)
ally termed “crossover,” and it has been shown that cross-

over phenomena can be consistently studied in the context efhere a,b=1,2,... M andi,j=1,2,... N. The models
(massive field theory. with M=2 are physically interesting since they should de-

Accurate theoretical and numerical studies of this phescribe the critical properties in some structural and antiferro-
nomenon have been presented in the literature, mainly focugpagnetic phase transitions and they are sufficiently general
ing, however, on the crossover between a trividhussiap ~ for the purpose of illustrating our results.
fixed point and an attractive Wilson-Fisher point, in the pres- The RG functiong,, g, , By, andz,, 7 are known up
ence of short- or medium-range interactifhs 5. However, 0 Six loops, and it is possible to study the fixed points of the
there are physical situations characterized by the presence grodels and their stability properties by solving the equations
a larger number of nontrivial fixed points. While only one for the common zeros of thg functions and evaluating the
among them is fully attractive and represents the physics dfigenvalues of the stability matrix].

the second-order phase transition, the other nontrivial points d'_l'he € e;](panswn anaI%/s[s r:)ff_thedtetr_agonlz\ill Haﬂnlll:torr]uan
exert some attraction on the RG trajectories, and as a consg- icates the presence of eight fixed points. Not all of them,

quence we may expect that, in the neighborhood of critical” owever, actually represent different independent physical

ity, the system can be quite accurately described by points iﬁltuatlons, because of the symmetry

the parameter space which lie near or above special RG tra- (Ug,00,Wo)— (Ug, U+ 2Wo, — W) )
jectories connecting the different fixed points. Generalized

crossover exponents may be defined along these trajectorigsossessed by the above Hamiltonian in the ddse2.

In experimental measurements, under proper assumptions, it The six distinct fixed points can be classified according to
is reasonable to expect that sets of measured exponents wilieir symmetry properties; with obvious notation we shall

correspond to specific points along these curves. identify them by the following names:
It may, therefore, be useful to find intrinsic characteriza-
tions of these generalized crossover curves, which only in G=Gauss-(Up=vo=Wp=0),
very simple and specific examples can be deduced directly i
from inspection of the relevant RG equations. I =Ising—(Up=vo=0)~1",
In order to study this problem, we found it convenient to ,
take a specific field-theoretical model, which was recently H=Heisenberg- (vo=w,=0),
discussed in the literature as the tetragonal Landau-Ginzburg
Wilson Hamiltonian[6,7]. The results we obtained in this XY—(Up=wWo=0),

T=tetragonal (wy=0),
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The symmetry properties of the Hamiltonian reflect them- In models characterized by a multidimensional parameter
selves in the symmetries of th@ functions. These in turn space, this notion of crossover must be supplemented by a
imply the existence of subspaces of the parameter spaaescription of the RG trajectories connecting different non-
(ug,vg,Wp) Which are stable under RG transformations. Onetrivial fixed points. As we shall immediately show, it is in
may easily show that, to all orders of perturbations theorygeneral possible to define “crossover surfaces” in parameter
the following initial conditions are preserved by RG trans-space, that have the property that all the RG trajectories con-

formations:uy=0: a plane includingG, I, ', and XY; wy necting nontrivial fixed pointgand obviously the points
=0: a plane includingG, H, XY, andT; v,=0: a plane themselveslie upon these surfaces.

including G, H, |, andC; vy+ 3wy=0: a plane including3, The formal proof of this statement for the tetragonal
H, 1", andC’. model discussed above goes as follows: we introduce the

An analysis of the stability matrix can be performed in renormalization functionZt_l(u,v,w) satisfying by defini-
full parameter space and in each of the invariant subspacegon the partial differential equation
leading to the following general conclusion(g) G is com-
pletely unstable with respect to any perturbation. 9 9 J o

(2) H, I, andl " are attractive with respect to the Gaussian Bi—+B,—+Bu—+n|Z; Yu,o,w)=0 (4
point, otherwise unstable with respect to all perturbations. au v oW

(3) CandC’ are stable in the subspaceg=0 andv, -
+2w,y=0, respectively, but their stability matrix possesses avith the boundary conditiorz, *(0,0,0)=1. Z; *(u,v,w)
negative eigenvalue in full parameter space. obviously reduces to the above defined functias'(z)

(4) XY is certainly stable in the subspagg=0 and prob-  whenever any two of the three couplings v, Ww are set
ably also in full parameter space, in which cabenas a equal to zero.

direction of instability in thew,=0 subspace, leading to-  Let us now consider the two-dimensional surface identi-
ward XY [7]. fied by the condition

Most previous studies of crossover have been concerned
with “crossover lines” connecting the Gaussian fixed point Z{l(U,v_,v_v)=O.

G with nontrivial fixed points along RG trajectories. In the
model at hand, the straight lines connecti@do the points ag g consequence of the differential equation obeyed by

! H _ _— >
I (1 ),_XY, andH are such crossover Imes, and the correR%_l(u’U’W) and of the above condition, the vector figid
sponding crossover exponents can easily be related to the e

functions obtained by specializing the general expressions t& (Bu(U:v,W), B,(U,v,w), By (U,v,w)) is ortogonal to the

the values taken along these lines: vector field VZ, '=(dz; Y/ou,0z; Y dv,d2; */ow) when
the two vectors are evaluated at any point of the surface
Bi(W)=pBy(0,0w), 7 (W)= n(0,0w), Z, =0, where3-Vz; '=0. Therefore the RG trajectories
going through any point of the surfaﬁg’lzo are found to
Br(w)=pB,(u,0,0, 7, (u)=27(u,0,0), stay on the surface itself, since the local tangent to the tra-
jectory, i.e., the vector fielg3, is orthogonal to a vector
Bry(0)=PB,(00,0), ”txy(”)z 7(00,0). normal to the surfacéhe gradient fieldVZ; *). Our proof is

now completed by the observation that all nontrivial points
lie on the surface because, as previously discussed, they must
satisfy the property, *(z*)=0.

An interesting consequence of our result is obtained by
nsidering the intersections of the crossover surface

{1(u,v,w)=0 with the RG-stable planes obtained by set-
ting up=0, vo=0, We=0, andvy+ 3Wy=0, respectively.
These intersections are obviously simple curves on the in-
z; Yz)=0 (3)  variant planes connecting pairs of nontrivial fixed points and
defining RG trajectories in the corresponding restricted pa-
rameter subspaces.
wherez is the generic coupling that parametrizes the cross- One cannot fail to notice that in deriving our result we
over line. only made use of very general properties of RG functions
It is relevant to our purposes to notice that, being the  and equations. Therefore we can draw the general conclusion
fixed point value of the coupling, such tha(z*)=0, as a  that the conditiorz, *=0 may unambiguously characterize
consequence of the above equation the funcfiph(z), un-  the “crossover surface” in wide classes of Hamiltonian sys-
der the “nontriviality” assumption,,(z*) <0, has the prop- tems involving many relevant parameters.
erty Z, }(z*)=0. We may appreciate that other choices of A rather explicit illustration of the mechanism described
the renormalization functiod, differing from Z, by powers in the present paper is obtained by considering the tetragonal
of Z,, will not alter our conclusion as long as the corre- model in the limit of an infinite number of field components
sponding nontriviality conditiony(z*)<0 is satisfied. (N—o). At variance with standard ®{) vector models, the

In particular, the functiorz, *, related to the renormal-
ization of the one-particle irreducible two-point function by
insertion of the operatoEi¢§’i(x), can be evaluated along co
the crossover lines simply by integrating the correspondingZ
differential equation

d
B2 5+ m(2)
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tetragonal model does not became trivial in this limit, be- 1

cause nontrivial contributions to all orders wfandw cou- 10(2N)
plings are still present. However some simplifications occur g
which make our discussion, while still quite general, for-
mally much simpler.

In the largeN limit is possible to show that the RG func- _.0.61

tions take the following form: 5
=1
Ba(U,0,W)=A(o,W)u—B(uo,W)u?, s %
Bou,v,w)=B(v,w), ) 02 Cubic
Ba W) = Bl W), @ JJOss  Ising]
o 0 0.5 W 1 1.5
77¢(U1U1W):77¢(U1W)1 (8)

FIG. 1. Crossover trajectories connecting the Ising and the
7:(U,v,W)=7,(v,W) +B(v,w)u. (99  O(2N) fixed points to the cubic one, in the limit of an infinite
number of field componentsN(—~). u and w are the standard
The system of equatiorfé;(v,w)=0 andfmv,w)zo ad- dimensionless renormalized couplings.
mits four sets of solutionsv(* ,w*). For each set one finds

two fixed points, corresponding to the value§=0 and U(v_v_v)= _1_ _ (14)
u* =A(v* ,w*)/B(v*,w*). Y(v,w)
Because of the above relationships, the differential equa-

tion satisfied by the functioﬁ{l(i,v_,v_v) can be solved in Notice that, as a consequence of H32), the function

the largeN limit by the ansatz u(v,w) does not depend on the detailed form of the RG
o o function 7,, as expected from our general arguments.
Z{l(u,v,w)zzt’l(u,w)[l—uY(v,w)] (10 The intersections of the crossover surface with the planes

v=0 andw=0 can now be found in a rather explicit form,
by exploiting the above simplifications. In terms of the ge-
neric variablez we obtain the relevant equations:

leading to the equations

By(v,w) i_+?3w<v_,W>i_+7h(v_,w>]zt Y(v,w)=0,
Ju oW

~ J ~ ~
11) B(2) =+ m(2) |2, H(2)=0, (15
{Z%T_W) L Ballo W)=+ Ao W) | Y(0,0) = B0, ) B(z) 2 1
o(U,W)—+ by(U,W) — v, v,W)=Db(v,W). — =
o0 oW B(z) —~ +A(2) U(Z)) B(2). (16)

(12

The first equation is simply the restriction of the evolution toIt Is straightforward to solve the linear equations, obtaining

the up=0 plane; we can then note that the functiow) _ (2
defined by the conditio#, *(v,w)=0 satisfies the ordinary Z Y(2)=exg — fode’ : 17)
differential equation B(Z)
dv  Bylv,w — X(2)
Qv _Bulo.w) 13 u(2)= . ag
dw  Bu(v,w) f [B(z')/B(z")]X(z')dZ’
0
characterizing all RG trajectories in the,(v) plane, and
furthermore it connects the and XY fixed points. Notice, where
however, that, since the conditiafj *(v,w)=0 is indepen- A
dent ofu, it defines a surface in full parameter space, and the X(Z):eXF{f — dz' |. (19)
above discussion shows that the fixed po@&nd T must lie 0B(z")

on this surface. _

Once the functionZ; * and Y(v,w) have been deter- It is easy to check thal(z)Nis a RG trajectory and that in
mined, it is easy in the larghl limit to reconstruct the full the limits z—0, z—z* [B(z*)=0] we have u(0)
Z, *=0 surface, which can be simply described by the above= A(0)/B(0) andu(z*)=A(z*)/B(z*), respectively, con-
condition and by the function sistent with the boundary conditions at the fixed points.
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The above expressions lend themselves to simple analytresummed six-loop RG functions are employed. The straight
cal integration in the one-loop approximation and to easyline connecting to C is the intersection of the =0 plane
numerical integration in the more general case. with the Z, =0 surface. The intersections of the crossover

For the sake of illustration we computed explicitly the surface with the plana§=0 andw=0 can now be found in
crossover lines on theu(w) plane. Figure 1 shows the re- a rather explicit form, by exploiting the above simplifica-
sults of our numerical integration of the equations, whertions.
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